1. 개념어떠한 데이터 입력이 들어왔을 때, 해당 입력을 압축 시켜 latent vector로 만든 후, 해당 embedding vector를 다시 본래의 입력 데이터 형태로 복원 하는 신경망 2. 구조인코더와 디코더로 이루어짐인코더는 입력 데이터를 압축하여 latent vector로 만듬, recognition network 라고도 불림디코더는 latent vector를이용하여 원래의 입력 형태로 만듬, generative network 라고도 불림 3. 활용데이터에 대한 차원 축소, 이상 탐지, 노이즈 제거, 인식, 생성 등에 활용됨 4. VAE(; Variational AutoEncoder)기본적인 형태의 오토인코더와 다름확률적 오토인코더로, 학습이 끝난 이후에도 출력이 부분적으로 우연에 의해 결..
Auto Encoder 요약
1. 개념어떠한 데이터 입력이 들어왔을 때, 해당 입력을 압축 시켜 latent vector로 만든 후, 해당 embedding vector를 다시 본래의 입력 데이터 형태로 복원 하는 신경망 2. 구조인코더와 디코더로 이루어짐인코더는 입력 데이터를 압축하여 latent vector로 만듬, recognition network 라고도 불림디코더는 latent vector를이용하여 원래의 입력 형태로 만듬, generative network 라고도 불림 3. 활용데이터에 대한 차원 축소, 이상 탐지, 노이즈 제거, 인식, 생성 등에 활용됨 4. VAE(; Variational AutoEncoder)기본적인 형태의 오토인코더와 다름확률적 오토인코더로, 학습이 끝난 이후에도 출력이 부분적으로 우연에 의해 결..
2024.09.05