0. 시작하기에 앞서본 게시물은 아래 참고링크의 게시글을 매우 적극적으로 활용하였으므로, 원 저작자에게 감사의 뜻을 남깁니다. 1. 개념U-Net은 오토인코더(autoencoder)와 같이 데이터의 차원을 축소했다가 다시 확장하는 방식의 모델로, Semantic Segmentation을 수행할 수 있다.그러나 오토인코더는 인코딩 단계에서 차원 축소를 거치면서 이미지 객체에 대한 자세한 위치 정보를 잃게 되고, 디코딩 단계에서도 저차원의 정보만을 이용하기 때문에 위치 정보 손실을 회복하지 못하는 단점이 존재한다.이러한 단점을 극복하기 위해 U-Net은 고차원 정보도 함께 이용하여 이미지의 특징을 추출함과 동시에 정확한 위치 파악을 하기위해 인코딩 단계의 각 레이어에서 얻은 특징을 디코딩 단계의 각 레이어..
U-Net: Convolutional Networks for Biomedical Image Segmentation
0. 시작하기에 앞서본 게시물은 아래 참고링크의 게시글을 매우 적극적으로 활용하였으므로, 원 저작자에게 감사의 뜻을 남깁니다. 1. 개념U-Net은 오토인코더(autoencoder)와 같이 데이터의 차원을 축소했다가 다시 확장하는 방식의 모델로, Semantic Segmentation을 수행할 수 있다.그러나 오토인코더는 인코딩 단계에서 차원 축소를 거치면서 이미지 객체에 대한 자세한 위치 정보를 잃게 되고, 디코딩 단계에서도 저차원의 정보만을 이용하기 때문에 위치 정보 손실을 회복하지 못하는 단점이 존재한다.이러한 단점을 극복하기 위해 U-Net은 고차원 정보도 함께 이용하여 이미지의 특징을 추출함과 동시에 정확한 위치 파악을 하기위해 인코딩 단계의 각 레이어에서 얻은 특징을 디코딩 단계의 각 레이어..
2024.09.02